VTBO (Video Traffic Bandwidth Optimization)

James Won-Ki Hong, PhD Senior Executive Vice President Chief Technology Officer Advanced Institute of Technology 2013. 09

Contents

- 1 Introduction
- 2 Issues in Video Streaming Delivery
- Proposal for Video Traffic Bandwidth Optimization
- 4 Summary

- 1 Introduction
- 2 Issues in Video Streaming Delivery
- Proposal for Video Traffic Bandwidth Optimization
- 4 Summary

01 Background

 Growth of video traffic leads to data explosion and wireless network resource depletion

Smart Devices Generate Explosive Video Traffic

- 70% of Mobile Data Traffic to be Video (2016; Cisco)
- KT's mobile traffic increased 300X during the last 3 years

Limitations of Network Investment

- Insignificant revenue growth compared to CAPEX growth
- Scarce spectrum resources

- 1 Introduction
- 2 Issues in Video Streaming Delivery
- Proposal for Video Traffic Bandwidth Optimization
- 4 Summary

02 Stakeholders in Video Streaming Face Serious Issues

The Current Situation

- Rapid diffusion of smart devices and customers' acceptance for video streaming service resulted in data explosion
- Customers experience inconvenience such as delays, motion stops, blurred and broken images in video streaming services

Interim Solution Concerns Adaptive Streaming/CDN Content Low user satisfaction Higher Quality Video Files **Providers (CPs)** • Fierce Competition for Competition Cache Significant traffic Network burden on network Capacity Investment Delays in loading Better Smart Devices **Users** Low level of QoE Switch to another CP Wasted Data

Issues

- QoE vs. Cost
- Impact of large file size on network congestion
- Provision of a single video file for a variety of screen sizes and resolutions

03 Issues in Video Streaming

- Need for Video Traffic Optimization Solution
 - Differentiate encoding bit rate for different types of device and content
 - Control video delivery when network is congested

04 Evolution of Video Streaming Technology

- The evolving streaming technologies still have limitations:
 - Video quality not optimized to human perception
 - Not possible to assure video quality when network is congested
- → Video streaming with network's help should be considered

- 1 Introduction
- 2 Issues in Video Streaming Delivery
- Proposal for Video Traffic Bandwidth Optimization
- 4 Summary

O5 Video Traffic Bandwidth Optimization (VTBO)

- Proposal to overcome limitations of streaming technologies
 - Optimization of video quality and Priority-based traffic control

Optimize video quality to prevent bandwidth waste

Assure video quality when network is congested

Encoding Bit Rate Guideline

Video Traffic Packetizing & Labeling

Traffic Control

- Different devices
- Different types of content

Priority label

Congestion control

06 Optimal Encoding Bit Rate Guideline (1/2)

Issue: No consideration of device/content types in video encoding

- Non-linear relationship between QoE and bandwidth usage
- Optimal encoding bit rate prevents excessive traffic generation

Suggest optimal encoding bit rate for different types of device/content

Reduce network bandwidth usage

07 Optimal Encoding Bit Rate Guideline (2/2)

- Study in progress by KT and Yonsei University
 - Devices: iPhone 5, Galaxy S4, iPad Retina Display
 - Content types: Documentary, Sports, Drama, etc.

Test Example (Source: Full HD (1080p) 8Mbps Video)

Source	Content Type			Device Type	Encoding Guideline	
Source	Genre	Spatial Frequency	Activity	Device	Video Resolution	Bit Rate (Mbps)
1	Documentary	Medium	Medium	iPhone	540p	4.0
				Galaxy S4	720p	5.0
				iPad	1080р	6.0
2	Sports	Medium	High	iPhone	540p	4.0
				Galaxy S4	1080p	4.0
				iPad	1080p	6.0
3	Drama	High	Medium	iPhone	540p	2.5
				Galaxy S4	540p	2.5
				iPad	720p	3.0

- Derived optimal encoding bit rate and video resolution required to have QoE similar to that
 of the source based on subjective QoE measurements
- Experiment (based on ITU-T 910 standard) conducted for 30 content sources

08 Video Traffic Packetizing and Labeling

Issue: Difficult to sustain QoE when network is congested

- CPs decide on VTBO priority (High, Medium, Low) of video packets and mark them accordingly
 - Non-VTBO stream: best effort delivery

Priority-based traffic control is expected to minimize QoE degradation when network is congested

09 Video Traffic Control (1/2)

- Issue: Need for video traffic control during network congestion
- Control with minimal changes in existing network
 - All video packets are delivered when network is not congested
 - VTBO Scheduler controls video packets with priorities during network congestion

10 Video Traffic Control (2/2)

Provide dedicated bearer with higher QoS for VTBO Streaming

VTBO is expected to introduce network's control over video delivery

11 Video Quality Comparison: Conventional vs. VTBO

Random Discard

Priority-based Discard

Test conditions

- Original video with bit rate 4Mbps and resolution 480p (640 x 480), 30fps
- Approximately 50% of frames dropped for both cases
- Priority-based discard: only low-priority frames (b-frames) were dropped
- Random discard: frames were dropped randomly

- 1 Introduction
- 2 Issues in Video Streaming Delivery
- Proposal for Video Traffic Bandwidth Optimization
- 4 Summary

12 Video Traffic Optimization Landscape

VTBO

Joint Collaboration of CPs, Devices and Networks

- 1. Encoding Guideline
- 2. Priority-based Network Control

Enhance QoE and the efficiency of video streaming

13 Expected Benefits

14 Future Work

Encoding Bit Rate Guideline

 Tests on more variety of devices and video formats (e.g., UHD)

Video Traffic Labeling & Packetizing

• Priority marking mechanism for transport layer

Video Traffic Control

- Methodology to provide different bandwidth for different priorities
- Criterion for traffic control operation

We are trying to make VTBO an international standard

Thank you

